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In this paper we investigate the behavior of an Einstein crystal as a reference system in adiabatic
switching procedures. We study the canonical massive Nosé-Hoover chain (MNHC) dynamics [G.J.
Martyna, M.L. Klein, and M. Tuckerman, J. Chem. Phys. 97, 2635 (1992)] and show it can be
used to determine Helmholtz free energies within an adiabatic switching procedure. We calculate
the Helmoltz free energy difference between two different Einstein crystals, each consisting of 100
identical independent harmonic oscillators with different characteristic frequencies by a MNHC

molecular dynamics adiabatic switching procedure.

The simulations were performed using two

different switching functions. Applying the quantitative error analysis of Tsao, Sheu, and Mou [J.
Chem. Phys. 101, 2302 (1994)), it is found that systematic errors during the switching process can
be estimated quantitatively, allowing a correction of the converged results. The corrected results
obtained by adiabatic switching deviate less than 1% from the analytical value. It is observed that
quantitative correction of converged results can be avoided by choosing a proper switching function.

PACS number(s): 05.70.—a, 02.70.—c, 63.70.+h, 65.50.+m

I. INTRODUCTION

Molecular dynamics (MD) is a simulation technique
widely used in the statistical treatment of classical many-
body systems [1-3]. One of the principal applications of
MD concerns determination of thermodynamic proper-
ties of liquids and solids. The determination of free en-
ergies is of considerable interest, from both the scientific
and technological points of view, since they play a crucial
role in several physical phenomena such as phase transi-
tions and vacancy formation processes. The main prob-
lem in determining thermal quantities using MD is the
fact that they are functions of the total available phase-
space volume. Consequently, they cannot be expressed as
an ensemble average, which is possible for properties such
as internal energy, enthalpy, and temperature, which are
explicit functions of the phase-space coordinates.

In the literature, several computational methods based
on different philosophies have been used to determine
free energies using MD simulations. The quasiharmonic
(QH) [5-7] and local harmonic (LH) [4,6] methods are
based on the so-called harmonic approximation. This
approximation assumes that, when the deviations of the
atoms from their equilibrium positions are small, the lat-
tice energy U can be approximated by expansion about
its equilibrium value, including terms up to second or-
der in the atomic deviations. In this case, the system
is completely described by the dynamical matrix D and
the Helmholtz free energy is determined in terms of its
eigenfrequencies. The main disadvantage of the QH and
LH methods, aside from the computationally demanding
diagonalization procedures, is the fact that the approxi-
mations involved generally lose validity under conditions
near phase transitions.

An alternative method, which in principle is exact, is
the thermodynamic integration (TI) procedure [8]. This
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procedure determines the free energy difference AF be-
tween the system of interest described by a Hamiltonian
H, and a certain reference system described by H;. In-
troducing the coupling parameter A, which varies be-
tween 0 and 1, a composite Hamiltonian

H=MHo+(1-ANH,=K+XU+(1-A)V, (1.1)
where K represents the kinetic energy, U the poten-
tial energy of the system of interest, and V the poten-
tial energy of the reference system, is constructed. The
Helmholtz free energy difference between the systems of
interest and reference is then given by

AF=/01<%—§I>AdA=/01(U~V)AdA. (1.2)

The numerical evaluation of the integral in Eq. (1.2) re-
quires a set of equilibrium MD simulations based on the
composite Hamiltonian (1.1) for various fixed values of
A between 0 and 1. During every simulation, the equi-
librium ensemble average (U — V'), corresponding to a
certain value of A is determined after which a numeri-
cal estimate of the integral can be made. Although ex-
act, the TI method is computationally rather demanding
since several runs have to be executed, each of them re-
quiring sufficient equilibration and sampling time.

In 1990, Watanabe and Reinhardt [9] proposed the adi-
abatic switching method, which is based on the Hertz er-
godic invariance principle [10]. This principle states that,
in an adiabatic transformation of a system described by
an ergodic, deterministic, Hamiltonian energy conserving
dynamics Dy into another system described by D;, a con-
stant energy shell o(FEg, Do) with phase volume Q is pre-
cisely mapped upon the constant energy shell o(E1, D;)
which has exactly the same phase-space volume 2. The
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original demonstration of the principle by Hertz has been
included in the Appendix and it has to be emphasized
that the derivation does not explicitly require the dy-
namics to be Hamiltonian. However, as we will see later,
the use of the Hertz principle within a non-Hamiltonian
dynamics may involve certain technical problems which
compromise the rigorous theoretical basis of its applica-
tion. The simplest application of Hertz’s principle is an
adiabatic transformation between two ergodic Hamilto-
nian systems. In this case, a time dependent Hamiltonian

H(t) = At)Ho + [1 — A(¢)|H: (1.3)
is introduced. Hj, describes the system of interest and
H, represents some system of reference. The coupling
parameter A changes slowly and smoothly from 1 to 0,
establishing the slow switching from Hy to Hy. If the
switching is adiabatic and both Hy and H; are ergodic, a
classical trajectory governed by (1.3) connects a constant
energy shell o(Ey) of Hy with unknown entropy with a
constant energy shell o(E;) of H; with the same entropy.
Now, if we know the corresponding entropy S,es(E1) of
the reference system, we automatically know that for the
system of interest this entropy corresponds with the en-
ergy Eg. Thus, in principle, the computation of a single
classical trajectory based on (1.3) is sufficient to deter-
mine the entropy S,ys+ corresponding with energy Ejq.

Besides this application, Watanabe and Reinhardt
showed that the adiabatic invariant is also useful us-
ing a dynamics other than the standard Hamiltonian
dynamics. They showed, for instance, [9] that if the
adiabatic switching procedure is performed under the
extended Hamiltonian (constant temperature) Nosé dy-
namics [11,12], the Helmholtz free energy difference be-
tween the system of interest and reference at temperature
T can be determined directly from a single trajectory and
is given by the difference between the initial and final en-
ergies of the extended Nosé Hamiltonian in the switching
process.

Adiabatic switching is a flexible and computationally
relatively inexpensive method. It does not rely on any
approximation and the needed information can, in prin-
ciple, be determined from a single trajectory. In this
sense, adiabatic switching does not present the disad-
vantages inherent in the harmonic and thermodynamic
integration methods.

Despite the computationally promising features, ap-
plication of adiabatic switching in a realistic simulation
situation presents some difficulties which inhibit the va-
lidity of the Hertz invariance principle. First, there is
the question of ergodicity. Strictly speaking, ergodicity
of the dynamics at any stage during the switching pro-
cess is a necessary condition for the validity of the Hertz
invariance theorem. However, in their simulations com-
puting the entropy of liquid water using adiabatic switch-
ing, Watanabe and Reinhardt observed convergence of
the final energy of the switching process for switching
times very short compared to the ergodic time scale. Ap-
parently, ergodicity does not seem to be such a critical
condition. A more important problem is the fact that in

simulations only finite (nonadiabatic) switching rates can
be used. As a result, one cannot rely on pointwise map-
ping of constant energy shells in a realistic simulation
situation.

In 1992, Jarzynski [13] presented a mathematical anal-
ysis studying the effects of finite switching rates on the
conservation of the adiabatic Hertz invariant. The anal-
ysis confirms that for finite switching rates there is no
pointwise mapping of an initial constant energy shell onto
a final constant energy shell. Instead, Jarzynski showed
that the time evolution of the energy distribution func-
tion is governed by a diffusion equation. Based on this
equation, he showed that an initial § energy distribution
function diffuses into a final Gaussian energy distribution
function of finite width. Furthermore, it was found that
the mean of the Gaussian is shifted towards a higher en-
ergy relative to the position of the adiabatic final § energy
distribution function.

In this manner, it is clear that in a realistic simulation
situation a single trajectory estimate is subject to two
kinds of error. First, there is a statistical error due to
the finite width of the final distribution. Secondly, there
is a systematic error caused by a shift of the mean with
respect to the position of the final § energy distribution
of the pointwise mapping process. Determination of the
statistical error is relatively easy by calculating a small
number of trajectories and estimating the mean and the
variance of the final energies. On the other hand, the
estimation of the systematic error is rather complicated.
The expressions derived by Jarzynski are not convenient
to be used in a simulation situation.

Very recently, Tsao, Sheu, and Mou [14] presented
an alternative analysis of the effects of finite switching
rates on adiabatic switching. In their analysis, which is
based on a thermodynamic rather than a mathematical
approach, they derive an expression for the growth of the
systematic error during the switching process. The ad-
vantage of this expression over the one derived by Jarzyn-
ski is the fact that the former is physically more transpar-
ent which allows an easier application in realistic switch-
ing processes. In their paper, Tsao et al. apply the adia-
batic switching method to calculate the absolute entropy
of water and ice. Based on their systematic error ex-
pression, they qualitatively show that the choice of the
combination of reference system and switching function
has a decisive influence on the goodness of the results of
adiabatic switching.

In this paper, it is our objective to study an Einstein
crystal in canonical ensemble adiabatic switching pro-
cesses. The Einstein crystal is of considerable interest
since it is the most suitable reference system in adiabatic
switching processes involving real solids. It is particu-
larly interesting to see how such processes behave under
constant temperature conditions since, in principle, they
allow determination of the Helmholtz free energies of re-
alistic solids. For this purpose, we applied the adiabatic
switching method to determine the Helmholtz free en-
ergy of an Einstein crystal consisting of 100 identical in-
dependent harmonic oscillators. As a reference, we used
another Einstein crystal having the same configurational
structure but a different characteristic frequency. The
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switching simulations were performed using the canon-
ical massive Nosé-Hoover chain (MNHC) dynamics in-
troduced by Martyna, Klein, and Tuckerman [15], which
has been shown to generate the canonical distribution for
a system of independent harmonic oscillators [16]. This
dynamics is a modification of the original Nosé-Hoover
chain (NHC) dynamics, which has been used recently by
Holian, Posch, and Hoover [17] to compute the Helmholtz
free energy of a six-body harmonic chain by dynamic TI
methods. Finally, we apply the error analysis of Tsao et
al. to study the goodness of the obtained results in a
quantitative manner.

In Sec. II, we give a summary of the results of the error
analysis of adiabatic switching as presented by Tsao et
al. and discuss means by which their analysis can be ap-
plied in a quantitative manner. In Sec. III, we focus on
the dynamics of the MNHC method and discuss its ap-
plication in an adiabatic switching procedure. We show
that the derivation of Watanabe and Reinhardt regarding
Helmholtz free energy determination by adiabatic switch-
ing procedures using the Nosé dynamics presents formal
problems when applied to switching processes within the
non-Hamiltonian MNHC dynamics. Instead, we use a
thermodynamic argument to explain that the Helmholtz
free energy determination should be the same in both
cases. In Sec. IV, we first describe the computational
details of the simulations, after which we present and
discuss the obtained results. We end with conclusions in
Sec. V.

II. ERROR ANALYSIS

We consider an adiabatic switching process transform-
ing a system described by the dynamics Dy (not necessar-
ily Hamiltonian) into another system D;. Dy conserves
the Hamiltonian energy E = K + U whereas D; con-
serves E = K + V. The switching process is controlled
by the time dependent coupling parameter A(¢) which
decreases from 1 to 0 in a total switching time t,. The
instantaneous dynamics D(A) determined by A conserves
E = K + AU + (1 — A\)V. Obviously, D(1) = Dy and
D(0) = D,.

If the switching is adiabatic (infinite ¢,), the Hertz in-
variance principle guarantees that a constant energy shell
o(K + U, D) is mapped upon the constant energy shell
o(K + V,D;) having the same phase-space volume Q.
In the case of finite (nonadiabatic) switching times, an
initial  function energy distribution diffuses into a Gaus-
sian distribution of finite width. The difference between
adiabatic and nonadiabatic switching has been depicted
schematically in Fig. 1. In addition to the stochastic
broadening M5, the mean of the Gaussian is shifted by
an amount M; with respect to the position of the adi-
abatic § function energy distribution. This systematic
shift M; is caused by dissipative relaxation of the par-
ticle configurations near to equilibrium towards equilib-
rium. In a perfectly adiabatic process, the switching rate
is infinitely slow so that the configurations remain repre-
sentative for the instantaneous dynamics (i.e., in equilib-
rium) at all times. However, if the switching rate d\/dt is

Nonadiabatic process

Adiabatic process

Energy

FIG. 1. Evolution of initial § function energy distribution
due to adiabatic and nonadiabatic switching.

finite, finite changes in the instantaneous dynamics occur
at any instant during the switching, making the process
typically nonequilibrium. The relaxation of the particle
configurations may be described in terms of a character-
istic time lag Tiqg. This time lag is regarded as the time
the configurations lag the actual dynamics.

Now, although the process is a nonequilibrium one, the
configurations remain near equilibrium (because of the,
although finite, small switching rates) which enables a
linear response analysis of the time lag. We will discuss
this point in more detail later in this section.

The width M, reflects the chaotic nature of the tra-
jectory dynamics. Different trajectories with the same
initial energy will generally pass through different near-
to-equilibrium states. As a consequence, different trajec-
tories are subject to different time lags during the switch-
ing, which leads to the diffusive broadening.

Tsao et al. have derived an expression for dM,/dt
in terms of the switching rate dA/dt and the time lag
Tlag- Regarding the system described by (1.3) as a lin-
ear nonequilibrium thermodynamic system they find that
dM, /dt is given by

dM; 1 dx\?
el ﬁnag (E) var(U — V),

where k is Boltzmann’s constant, T is the absolute tem-
perature, and var(U — V), is the canonical ensemble vari-
ance of the phase-space function U — V for the static
system described by (1.3) with a specific fixed value of
A corresponding to t. Generally, 7154 and var(U — V)
depend on X (and thus on time in the switching process).
Note that (2.1) is a positive definite expression. In this
manner, the average nonadiabatic energy is always larger
than the adiabatic energy.

A time integration of (2.1) over the switching time in-
terval gives the total systematic error M; of the process;

(2.1)

1 [t d\?
M= /0 Tiag (E) var(U — V)dt.  (2.2)

Introducing the scaled variable 7 = t/t, (2.2) can be
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rewritten as

1 [t dx\?
M, = m/o Tlag (E) var(U — V)..dr. (2.3)

Tsao et al. have shown that (2.1) is of considerable
help in the choice of the switching function A(t) and
the reference system V. They argued that one should
choose the switching rate to be smaller in regions of
slow relaxation or large fluctuations in U — V. To test
their ideas, they applied the adiabatic switching method
to compute the absolute entropy of single point charge
(SPC) water and ice. Their simulations were performed
using standard Hamiltonian dynamics and as reference
systems the ideal gas (V = 0) and the Einstein crystal
vV = % S k(xi — xio)?] were investigated. As switch-
ing functions, they analyzed the functions

A(r) = Ca(7)
=1-—75(707* — 3157 + 5407% — 4207 + 126) (2.4)

and
A(T) = Ca(1) = (1 —7)5. (2.5)

Plots of (2.4) and (2.5) can be found in Fig. 2 and we
see that both switching functions have a vanishing slope
at the end of the switching process. According to Tsao
et al. this is necessary because the time lag 71,4 diverges
at the independent particle end of the switching. Their
simulations show that the best results of the adiabatic
switching method applied for both SPC water and ice
are obtained using Cy(7) as switching function and the
Einstein crystal as a reference. They explain these re-
sults by arguing that var(U — V') using the Einstein solid
is smaller than for the ideal gas reference system. Fur-
thermore, C2(7) approaches the independent particle end
of the switching process (diverging Ti,4) With a smaller
rate than Cy(7).

From the results of Tsao et al. we see that expression
(2.1) can be used as a guideline to a suitable choice of
switching functions and reference systems in an adiabatic

1.0

0.8

0.6

0.4

0.0

1 " 1 L 1 " 1 2 1 " 1

0.0 0.2 0.4 0.6 0.8 1.0
T

FIG. 2. Switching functions C;(7) and Cz(7).

switching procedure. Nevertheless, we should be able to
go beyond this and use the integral expression (2.2) to
explicitly calculate the systematic error in an adiabatic
switching procedure.

The main problem is to find a suitable way of mea-
suring the time lags 7;o4. Recently, Wood [18] used On-
sager’s principle [19] to achieve this goal. Onsager’s prin-
ciple states that when a system is not too far from equi-
librium the relaxation of any mechanical property obeys

AA) _ C@)

A4(0) ~ C(0)’ (2.6)
where
AA(t) = A(t) — (A) g, = 6A(t) (2.7)
and
o(t) = lim % / " dE SA®) SAGE + 1) (2.8)

is the equilibrium time autocorrelation function. Thus in
principle we should be able to use the decay time of the
equilibrium autocorrelation function of U —V to estimate
the time lags.

The other quantity to be determined is var(U — V).
This variance is a canonical ensemble variance which can
be easily determined in an equilibrium canonical ensem-
ble simulation.

III. ADIABATIC SWITCHING USING
THE MNHC DYNAMICS

In 1984, Nosé [11] proposed a set of dynamical equa-
tions that can be shown to generate canonically dis-
tributed positions and momenta for ergodic systems.
Although Nosé’s method has proved to work well for
strongly coupled systems, it fails for small or stiff sys-
tems. To overcome this problem, several authors have
studied alternative methods [20-22]. The most appealing
method was proposed recently by Martyna, Klein, and
Tuckerman [15]. The dynamics they presented is capable
of generating the canonical distribution for a single har-
monic oscillator without giving up the simplicity of the
original Nosé approach. Their method, which they called
the Nosé-Hoover chain (NHC) method, can be expressed
as

. Di
qdi = —,
m;
. v P
Di = — —Prﬂl,
9¢; o3
. Pn;
n = in )
Cn g
. p; Pn,
Dny, = = —nkT| — pp, =* (3.1)
m h; m; m QZ ’
r.2
. pﬂj—l pﬂj+1
Pn; = —kT| —pn; 77—
i | Qi—1 Qi
.2
. p"lM——l
Pov — - kT:l )
| QM1
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where the p; and ¢; describe the n one-dimensional de-
grees of freedom of the physical system, m; the masses of
the physical degrees of freedom, and the 7; and the p,,
represent the coordinates and the momenta of the M ex-
ternal degrees of freedom (thermostats). The parameters
Q; act as moments of inertia for the motion of the ther-
mostats. Furthermore, & is Boltzmann’s constant and T
is the absolute temperature. Investigating the structure
of the set of equations (3.1), it can be seen that the M
thermostats form a linear chain of which only the first
thermostat 7; is coupled directly to the physical system.
The NHC method generates states (7, q, Py, 77 ) according
to the distribution function

o oo 1 n p-2
P(P,Qapm'ff) x eXP{—k—f l:V(ti) + ; —2_1':—1,:

M 2
} (3.2)

and conserves the Hamiltonian-like energy

2
i

n M 2

[ Py,
BE &M=V @+ g+ 50
i=1 4= *

M
+ nkTm + Z kT'ni.

=2

(3.3)

This implies that in the extended phase space (3.1) gen-
erates a microcanonical distribution. The moments of
inertia @; should be chosen to be Q; = nkT/w? and
Qi = kT/w2 to establish near resonance between the in-
dividual thermostats and between the thermostat system
and the physical phase-space coordinates (p;, ;).

Although the NHC dynamics is capable of generating
the canonical distribution for a single harmonic oscilla-
tor, it is not for a system of n independent harmonic os-
cillators, as was shown very recently by Smargiassi and
Madden [16]. To solve this problem, the so-called mas-
sive Nosé-Hoover chain (MNHC) dynamics can be used.
The difference between NHC and MNHC dynamics is
that, instead of a single linear chain of M thermostats
connected to the physical system, the MNHC dynamics
couples n linear chains each consisting of two or more
thermostats to the n physical degrees of freedom. The
equations of motion of the MNHC method (chains of two
thermostats) are

. D
i = —,
m;
. BV p"li,l
p" - aqi pl Qi 3
. Dn;,
N1 = 5; )
. Pn;,
hz2 = 22:, (3.4)
2
— & —kT p’l-’,z
p7h1 m; p"h,l Qz ’
2
. 23,
P = 22: — kT,

which generate the distribution (3.2). In extended phase
space (3.4) generates the microcanonical distribution
with energy

N P N~ P P
E(B,d, 50 = V(D + D 2 +y BT
=1 =1

+ ) KT (M1 +mi2) - (3.5)

=1

In principle, as with the canonical Nosé dynamics, it
should be possible to determine Helmholtz free energies
by an adiabatic switching procedure using the canoni-
cal MNHC dynamics. However, a theoretical demonstra-
tion of this is far from straightforward. Watanabe and
Reinhardt utilized the partition function of the micro-
canonical ensemble corresponding to the Nosé dynamics
to demonstrate the possibility of determining Helmholtz
free energies by an adiabatic switching procedure using
the Nosé dynamics. Nosé found this microcanonical par-
tition function to be of the form

Z,(Enm) = C exp (EE) Z.(T), (3.6)

kT

where C is a constant and Z.(T') is the canonical parti-
tion function of the physical system at temperature 7.
For the non-Hamiltonian MNHC dynamics, however, it
can be shown that its corresponding microcanonical par-
tition function is singular. This singularity is due to the
configurational part of the thermostats in this partition
function. Because of the presence of more than one ther-
mostat, the thermostat coordinate subspace {7; 1,72,
i=1,...,N} of any constant energy shell is unbounded
(e.g., see Appendix A of Ref. [15]) which leads to an infi-
nite phase-space volume. In the case of the Nosé dynam-
ics this problem does not occur since only one thermostat
is included so that its corresponding subspace is bounded.
It is not clear to us to what extent the singularity in the
microcanonical partition function is related to the fact of
the MNHC dynamics being non-Hamiltonian.

Instead of relying on a statistical-mechanical analysis,
which reflects specific details of the dynamics used, we
feel it is very illuminating to consider adiabatic switch-
ing processes within canonical ensemble dynamics from
the thermodynamic point of view. The advantage of such
an approach is that we do not need to consider any spe-
cific details of the switching procedure or the dynamics
used but rather concentrate on the macroscopic thermo-
dynamic system they represent. In this case, we consider
a system A composed of a system of interest A; which is
in thermal equilibrium with a heat reservoir A, at tem-
perature T. In principle, A is closed so that the total
internal energy remains constant. Then, at a certain in-
stant we open the system and invoke an external work
source which performs reversible work on the system of
interest A; at an adiabatic rate without exchanging any
heat. How do the internal energies (E;, E2), entropies
(S1,S2), and Helmholtz free energies (Fy, F3) of A; and
A, change during this adiabatic isothermal process? Let
us consider the change of these quantities due to an in-
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finitesimal amount of work dW done on A;. According
to the first law of thermodynamics we have

dE, = TdS; + dW,
dEz = Td52,

(3.7)
(3.8)
observing that the heat reservoir cannot perform any

work. Furthermore, since the process is adiabatic, the
total entropy change satisfies
dS =dS, +dS; = 0. (3.9)

The changes in the Helmholtz free energies of the sub-
systems A; and A, are

dF, = dE, — TdS,, (3.10)
dFy = dE, — TdS,. (3.11)

Adding (3.10) and (3.11) we obtain
dF, + dF; = dE; + dE; — T(dS; + dSs). (3.12)

The Helmholtz free energy change of the heat reservoir
satisfies dF; = 0 as can be seen from (3.8) and (3.11).
Inserting this information and (3.9) into (3.12) we obtain

dFy = dE; + dE,. (3.13)

Thus we see that the change of the Helmholtz free energy
of subsystem A; is equal to the change of the total inter-
nal energy of the composite system A. For the complete
process, the total Helmholtz free energy change of the
physical system will be

AF, = AE; + AE,. (3.14)

This is exactly the same result as derived by Watanabe
and Reinhardt for adiabatic switching procedures using
Nosé dynamics. This agreement seems reasonable since
the dynamics of these procedures contains all microscopic
elements necessary to fulfill the macroscopic thermody-
namic conditions of the analysis above. First of all, the
thermostat subsystem of the Nosé dynamics maintains
the physical system and itself at a constant temperature.
This is accomplished exclusively by exchanging heat. The
thermostat system cannot perform any work since no ex-
ternal parameters are present in its equations of motion.
Secondly, the Nosé dynamics conserves the total energy
of the extended system representing the condition that
the extended system is closed. Finally, the adiabatic re-
versible work done by the external source is represented
by the coupling parameter A which varies very slowly in
time. Clearly, the external work is done without any
heat exchange since the only link between the physical
system and the work source is the parameter A\. Thus we
see that the microscopic properties of adiabatic switching
procedures using Nosé dynamics are compatible with the
macroscopic conditions of the thermodynamic adiabatic
isothermal process described earlier.

If we have a look at adiabatic switching processes using
the MNHC dynamics, we see that, although quite differ-
ent from those of the Nosé dynamics, the equations of

motion are compatible with the same macroscopic con-
ditions. Therefore, adiabatic switching procedures us-
ing the MNHC dynamics represent adiabatic isothermal
processes in the thermodynamic sense and thus we ex-
pect that they can be used to determine Helmholtz free
energies by applying (3.14).

IV. CALCULATIONS AND RESULTS

In this section we describe the computational details
and the results of the calculations performed to test the
error analysis of Tsao et al. and investigate the pos-
sibility of using an Einstein crystal as a reference sys-
tem during a constant temperature switching procedure
within MNHC dynamics. In the adiabatic switching sim-
ulations, the system of interest was an Einstein crystal
consisting of 100 identical independent one-dimensional
harmonic oscillators with m = 1 and w = 0.5. As the sys-
tem of reference we used another Einstein crystal having
the same structure, equal masses, but a different charac-
teristic angular frequency w = 4. The adiabatic switching
procedures were performed within the MNHC dynamics
(3.4) with kT = 1. For the value of Q@ = kT'/w? we took
@ = 0.25 which corresponds with the intermediate fre-
quency w = 2. We checked that the dynamics using this
value of Q generated canonically distributed momenta
during the switching. The equations of motion of the
MNHC dynamics were integrated using the leapfrog al-
gorithm [23] with a time step A¢ = 0.01. As switching
functions both (2.4) and (2.5) were investigated.

In Fig. 3 we plotted the Helmholtz free energy differ-

T T T T T T T
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FIG. 3. Helmholtz free energy difference between two
Einstein crystals consisting of 100 identical independent
harmonic oscillators as a function of ¢,. Initial crystal,
m = 1l,w = 0.5; final crystal, m = 1,w = 4. During the
switching we set kT" = 1. Results are displayed for both
C1(7) and Cz(7).
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ence (3.14) between the systems of interest and reference
as a function of the switching time ¢, for both C;(7) and
Ca (7). The statistical errors associated with each ¢, were
estimated by computing five trajectories with different
initial conditions.

The switching procedure using C;(7) converges faster
than the switching with Cz(7). Furthermore, we observe
that the converged free energy difference using C;(7)
agrees very well with the theoretical value within the
statistical error. This confirms the applicability of adi-
abatic switching using the MNHC dynamics to deter-
mine Helmholtz free energies. On the other hand, the
converged estimate using C2(7) is systematically higher.
The statistical errors decrease with increasing switching
time and for Cy(7) they are smaller than for C3(7).

To correct the final estimates of the switching proce-
dure, we calculated the systematic errors based on (2.3).
For these purposes, several equilibrium constant temper-
ature simulations were performed at various fixed values
of the coupling parameter A. From these simulations,
we estimated the variances var(U — V) as a function of
A. Furthermore, we calculated the autocorrelation func-
tions Cy_v (7) to estimate the time lags T44. In Fig. 4
we plotted the autocorrelation function for A = 0.7. We
defined the time lag to be the time corresponding with
the first intersection with the 7 axis.

In Fig. 5 and Fig. 6, respectively, we plotted var(U —V)
and Ti,g as a function of A. In Fig. 5 we added the ana-
lytical expression for var(U —V') to check the reliability of
the numerical results. The analytical expression is given
by
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var(U — V), = %Nsz2 (

where w; and w, are, respectively, the initial and final
frequencies of the switching process. The agreement be-
tween the exact values and the numerical results is ex-
cellent.

We observe that in the initial stages of the switching
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FIG. 4. Autocorrelation function Cy_v(7) for A = 0.7.
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FIG. 5. var(U —V) as a function of A. The circles represent
the numerical data; the line represents the exact values of
expression (4.1).

(X near to 1) the variance is the dominant factor in the
error function. Therefore one should choose a switching
function with a vanishing slope in the beginning of the
switching. Based on the data in Fig. 5 and Fig. 6 we
constructed the integrand in (2.3) as a function of 7 for
both switching functions. The results have been depicted
in Fig. 7 and Fig. 8.

Because of its vanishing slope in the beginning, Cy(7)
manages to control the integrand whereas C;(T) cannot
prevent the near singularity for 7 = 0. We integrated
both error functions between 7 = 0 and 7 = 1 to find
estimates for the systematic error of the switching pro-
cess with ¢, = 2800. In Table I we have summarized the
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FIG. 6. Time lag Tiag as a function of A.
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FIG. 7. Error function for Ci(7).

results. In the second column we placed the converged
results of the switching procedures, in the third the sta-
tistical errors, in the fourth the systematic errors, and
in the last the final result in which a correction for the
systematic errors has been taken into account.

From Table I we see that both corrected results deviate
by less than 0.5% from the theoretical result, which is a
surprisingly good agreement and it confirms the quanti-
tative applicability of the error analysis of Tsao et al. If
we consider the uncorrected results in the second column
we observe that, choosing the better switching function
C1(7), we manage to keep the error (systematic and sta-
tistical) within 1%.

Finally we feel it is important to emphasize that one
cannot speak of globally “good” or “bad” switching func-
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FIG. 8. Error function for Cz(7).

TABLE I. Results of adiabatic switching simulations. In
the second column the uncorrected estimates of AF are de-
picted. In the third and fourth columns respectively, the sys-
tematic and statistical errors are shown. In the fifth column,
we show the estimates corrected for the systematic errors.

A1) AF M, M- Corrected AF
Ci(1) 208.88 0.85 0.85 208.03 + 0.85
Ca(7) 218.1 11.2 2.8 206.9 £ 2.8

tions. The goodness of a switching function differs for
every specific switching process and this has to be eval-
uated for each separate case. To improve the quanti-
tative results of the method one should always choose
the reference system “as close as possible” to the system
of interest. For example, if we use an Einstein crystal
as a reference system in an adiabatic switching process
involving a real solid, we should choose its frequencies
according to the principal vibrational modes of the real
solid.

V. CONCLUSIONS

The results of the last section confirm that adiabatic
switching procedures using MNHC dynamics allow de-
termination of Helmholtz free energies. The simulations
show that it is possible to use the Einstein crystal as a ref-
erence system in an adiabatic switching procedure within
constant temperature MNHC dynamics. This allows ap-
plication of the adiabatic switching method to determine
Helmholtz free energies of realistic solids. Furthermore,
the error analysis of Tsao et al. [14] enables quantitative
estimation of the systematical errors involved to be made.
In realistic simulations, however, a detailed quantitative
error analysis, which requires substantial computational
effort, will not be necessary. Instead, one will monitor
the variance and the time lags at the initial, final, and a
few intermediate stages of the switching process to gain a
qualitative insight into their variation during the process.
Accordingly, one can choose a proper switching function
to reduce the systematic and statistical errors to within
a few percent.
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APPENDIX: THE HERTZ INVARIANT

In this Appendix we review the original demonstra-
tion of the adiabatic invariance principle as presented by
Hertz in 1910 [10]. We consider a system which pos-
sesses an externally controllable variable \. We assume
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the dynamics of the system is ergodic and conserves en-
ergy (not necessarily Hamiltonian) for fixed A. In other
words, for any fixed A the dynamics propagates the state
of the system (p,q) through all states of the constant
energy shell o(E, A). Furthermore, we suppose that the
dynamics is deterministic, i.e., any initial condition de-
termines a unique trajectory in phase space. The energy
of the system is a function of the phase-space coordinates
(p,q) and A:
E = E(p,q, ). (A1)
Let us consider the constant energy shell o(Fo, Ao)
with phase-space volume Qo as explored by the dynam-
ics for the fixed value Ag of the parameter A\. Suppose
we change X adiabatically by an infinitesimal amount éA.
In what manner does the initial constant energy shell
change? To answer this question we first compute the
energy change §E corresponding to the adiabatic incre-
ment §\. For this purpose we divide the total increment
4 into a large number of smaller increments §\; so that

S = 25,\,..

The increments é; are established in time intervals very
short with respect to the ergodic time scale. On the
other hand, to guarantee adiabaticity, the time intervals
separating two consecutive increments A; are taken to be
much larger than the ergodic time scale.

During a single increment §); the energy of a certain
state (p,q) will change abruptly by an amount

(A2)

OFE; = 6); o8

o (43)

b
E;,A;

where the derivative is calculated in the temporary state
(p, 9) on the temporary energy shell o(E;, A;). After com-
pleting all steps the total energy change will be

SE = 6\ oF (A4)

oA

E; ;i

Allowing infinitely small errors of second order in the §);
we may replace (A4) by

SE = 25,\,- oF

o ’ (A5)

Eo,X0

calculating all derivatives on the initial constant energy
shell. In principle, the total energy changes are different
for all states on the initial energy shell since the deriva-
tive of the energy with respect to A is a function of (p, g).
However, recalling the fact that the time intervals be-
tween consecutive increments are very large and the fact
that the dynamics is ergodic, we see that during the total
increment all possible arguments (p,q) on o(FEp, Ao) for
the derivative are sampled. Thus we may write (A5) as

OE OE
JE_<—-E s >25,\i_<§E A >5,\, (A6)
0,\0 1 0,70

where <8E /0| g, Ao> is the microcanonical ensemble av-

erage of the phase function 8E /O over the constant en-
ergy shell 0(Eg, A\o). We see that all states (p, ¢) initially
on the constant energy shell o(Ep, Ao) finally lie on a new
constant energy shell o(Eo + 6E, Ao + 6)). Since we as-
sumed the dynamics to be deterministic this implies that
the initial shell o(FEp, Ao) is precisely mapped upon the
final shell o(Ey + 6 E, Ao + 0A).

What is the phase-space volume of the final shell? The
total derivative of the phase-space volume 2 with respect
to A can be written as

dQ 0Q 0 OFE

dXx 39X 9E ax’
First, we evaluate 822/0A. Consider Fig. 9, where two
constant energy shells o(Eg, Ao) and o(Fo, Ao + 6A) have
been depicted. The phase-space volume difference 692
between the two shells is given by

50 = / dn - do
o(FEo,Xo0)

_ / dn - _Q%Mo_da,
o(Eo,Xo) |(VE)PD,<10,>‘0

(A7)

(A8)

where dn is a vector perpendicular to o(Ep,Ao), con-
necting its states (po,go) with their opposites (p1,4q1)
on o(Eo, Ao + 6)). The operator V represents the 2n-
dimensional phase-space gradient. In order to evalu-
ate the dot product in (A8) we compute the energy
E(p1,q1, A0 + 6)) in terms of Taylor expansions about
E(po, g0, Ao0). We have

E(pl,qlaAO + (SA) = EO + d—’;l . (6E)

P0,90,X0
OF
Po,90, 0
In this manner, we find
dn - (6E) —_5n2E (A10)
Po,do; Ao 2 Po,90, 0
Inserting (A10) into (A8) we find
o(E,, Ao do
dn

OB o, Ao+ BA)

FIG. 9. The energy shells o(Fo, Ao) and o(Eo, Ao + ).
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)
ax

.y do___om
Eo,)0 oEg,Ao (6E) R oA
Po;90,7r0

Po,90,X0

(A11)

Apart from normalization, the surface integral in (A11)
is exactly equal to the microcanonical ensemble average
of the phase function OE/OA over the constant energy
shell o(Eg, Ag). Consequently, (A11) can be written as

N OF
- = —w (Eo, Ao) ey 5 (A12)
X | g, x, < A EA>
where
oN
w (Eo, Ao) = —_— (A13)
OFE Fo,o

is the so-called structure function of the microcanoni-
cal ensemble and represents the normalization. Inserting
(A12), (A13), and (A6) into (A7) we find

1749

—_ = 0. (A14)
dA Eo,Xo

We see that the adiabatic transformation leaves the total
phase-space volume unaltered.

The Hertz invariance principle implies that, in an adi-
abatic transformation of an ergodic deterministic energy
conserving dynamics (not necessarily Hamiltonian), a
constant energy shell of the initial dynamics is mapped
upon a constant energy shell of the final dynamics con-
serving the total phase-space volume.
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